Abstract
Background Melasma treatment remains challenging despite various laser systems available, because of potential side-effects and high recurrence rates.
Objective Non-ablative fractionated photothermolysis (FP) is a promising therapeutic method, long-time results comparing treated vs. non-treated site are lacking.
Methods A total of 14 patients were treated with FP in a split-face mode with standardized adjustments in three sessions (weeks 0, 3–4, 6–8, follow-up: 26–28). At each consultation, improvement was evaluated by patients and physicians. Objective assessment was performed using digital photographs and the pigment imaging tool SIAscope®.
Results Melasma improvement was registered in 83% and 75% of the cases 26–28 weeks after the first treatment based on two evaluations: by patient and by physician, respectively. Digital photography and SIAscope® revealed improvement in 54% and 85% after the first, 61% and 85% after the second, 41% and 58% after the third treatment, accordingly, mostly due to reduction of the outline sharpness. Patients with lighter skin complexions revealed significant improvement ranged from slight to moderate ($P = 0.03$). Postinflammatory hyperpigmentation occurred in two cases with skin types III and IV.
Conclusion Non-ablative FP can be considered as a valuable treatment option with short-term improvement in terms of mild reduction and softening the edges of melasma in patients with skin types I/Ii, if prior topical therapies failed. Treatment of patients with skin types III+ should be critically questioned.

Conflicts of interest
None declared.

Funding sources
The sun screen containing the green tea extract OM24® was supplied by Merz Pharma (Switzerland) AG. Marjam Jeanette Barysch and Reinhard Dummer were supported by the Society for Skin Cancer Research (Verein für Hautkrebsforschung, VHKF) and the Gottfried and Julia Bangerter-Rhyner Foundation.

Background
Melasma is a common and nuisance pigment disorder of the skin, mostly affecting women with darker complexions. Besides genetic predisposition and hormonal influences, UV irradiation is a major trigger factor for the development of melasma. Commonly available topical and physical treatments such as hydroquinone, retinoids, azelaic or kojic acids, chemical and mechanical peelings often lack success because of resistance to the agent and fast recurrences of the melasma. Laser systems are gaining popularity and treatments with several laser systems, e.g. the carbon dioxide or Q-switched alexandrite (755 nm), reduced hyperpigmentation in a number of cases. Nevertheless, high rates of postinflammatory hyperpigmentation and/or long downtime rates are commonly observed as well as melasma recurrence. Q-switched frequency doubled neodymium:yttrium-aluminium-garnet (Nd:YAG, 1064/532 nm) and the Q-switched ruby (694 nm) lasers failed in the treatment of melasma using the high fluence modus. Recently, low-fluence Q-switched Nd:YAG lasers proved to be reliable in the treatment...
of melasma of skin types III and IV, but retain the risk for depigmentation.17

Lately, non-ablative fractionated photothermolysis (FP) systems have been suggested for the melasma treatment with an acceptable side-effect profile.

Fractionated photothermolysis induces selective thermal damage in form of micro-beams with a diameter of less than 400 μm. This leads to the formation of microscopic thermal zones (MTZ) affecting collagen fibres and keratinocytes. Column-like necroses of keratinocytes (microscopic epidermal necrotic debris, MEND) develop within the epidermis and enable keratinocytes and dermal components to migrate towards the stratum corneum resulting in the removal of the coagulated substances.18,19 Directly after FP application on melasma lesions, melanin can be detected in MENDs within 6 days after the treatment.20 Enlarged melanocytes, commonly observed in melasma lesions, remain reduced in number up to 3 months after a single FP treatment.21 These findings suggest that MENDs are acting as ‘melanin shuttles’, resulting in the elimination of dermal and epidermal melanin.20

In a few clinical studies, an improvement of melasma was yielded after the FP-treatment.22,23 Nevertheless, neither long-term effects on Fitzpatrick skin types II–IV nor split-face experiments for the exclusion of interfering co-factors such as decreased exposure to ultraviolet irradiation during the winter months were investigated.

Therefore we opted to evaluate the long-term effects of the FP treatment in melasma patients in a split-face setting using the non-treated half of the face for a direct comparison. Sun screen containing the green tea extract OM24/C210 was applied to the whole face.

Table 1 Patient’s characteristics with prior treatments and localization of melasma

<table>
<thead>
<tr>
<th>Age</th>
<th>Skin type</th>
<th>Severity of melasma</th>
<th>Duration of melasma (years)</th>
<th>Prior treatments*</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>2</td>
<td>Strong</td>
<td>2</td>
<td>Azelaic acid</td>
<td>Around the lips, cheeks</td>
</tr>
<tr>
<td>43</td>
<td>2</td>
<td>Strong</td>
<td>1.5</td>
<td>Sun screen</td>
<td>Entire face</td>
</tr>
<tr>
<td>36</td>
<td>2</td>
<td>Strong</td>
<td>5</td>
<td>Hydroquinone</td>
<td>Cheeks</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>Strong</td>
<td>4.5</td>
<td>Hydroquinone</td>
<td>Entire face</td>
</tr>
<tr>
<td>42</td>
<td>2</td>
<td>Strong</td>
<td>4</td>
<td>Lactic acid superficial peels</td>
<td>Entire face</td>
</tr>
<tr>
<td>49</td>
<td>2</td>
<td>Strong</td>
<td>4</td>
<td>Glycolic acid superficial peel, hydroquinone, fractionated photothermolysis</td>
<td>Entire face</td>
</tr>
<tr>
<td>42</td>
<td>3</td>
<td>Strong</td>
<td>22</td>
<td>None</td>
<td>Around the lips</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>Strong</td>
<td>3</td>
<td>Hydroquinone</td>
<td>Around the lips, cheeks</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>Strong</td>
<td>2</td>
<td>Topical retinoids</td>
<td>Entire face</td>
</tr>
<tr>
<td>34</td>
<td>3</td>
<td>Strong</td>
<td>2</td>
<td>Hydroquinone</td>
<td>Entire face</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>Strong</td>
<td>5</td>
<td>Lactic acid superficial peels</td>
<td>Around the lips, cheeks</td>
</tr>
<tr>
<td>58</td>
<td>4</td>
<td>Strong</td>
<td>4</td>
<td>Hydroquinone</td>
<td>Cheeks</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>Strong</td>
<td>5</td>
<td>Azelaic acid, suns screen</td>
<td>Entire face</td>
</tr>
<tr>
<td>36</td>
<td>4</td>
<td>Strong</td>
<td>14</td>
<td>Azelaic acid</td>
<td>Entire face</td>
</tr>
</tbody>
</table>

*Applied for at least one season.
follow-up visit was performed 26–28 weeks after the first treatment session.

Standardized digital photographs were taken prior to each treatment session and at the last visit. At each visit, pigmentation grade of the treated side was evaluated separately by the patient and the physician. Pain during the treatment as well as redness and scaling of the skin after the treatment were evaluated by the patient at each visit. Evaluation scores were ranged from 0 to 5: 0 – ‘none’; 1 – ‘very low’; 2 – ‘low’; 3 – ‘moderate’; 4 – ‘high’; and 5 – ‘very high’.

Treatment effectiveness was objectively measured by the pigment distribution using the pigment imaging technology tool SIAscope® (Physiometrics, SIAscope V non contact; Astron Clini-

<table>
<thead>
<tr>
<th>Table 2 Pigment evaluation by patients and physicians</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks</td>
</tr>
<tr>
<td>Patient</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>3–4</td>
</tr>
<tr>
<td>6–8</td>
</tr>
<tr>
<td>26–28</td>
</tr>
</tbody>
</table>

Scores range from 0 ‘none’ to 5 ‘severe’.

Figure 1 Subjective evaluation of the treatment effectiveness performed by patients and physicians. (a) and (b) show mean evaluation values with their whiskers from minimum to maximum over the treatment time course. (c) and (d) show evaluation curves over the treatment time course divided by skin types.

Statistical analysis

Statistical analysis was performed using GRAPHPAD PRISM software version 5.00 (GraphPad Software, San Diego, CA, USA). P-values of less than 0.05 were considered to be statistically significant. For evaluation of the treatment effectiveness, one-sample t-test was performed. Two-way ANOVA was used for evaluation of the clinical outcome and erythema index for each skin type. Mean improvement scores (MIS), standard deviation (SD) and confidence intervals (CI) of 95% were computed.

Results

A total of 14 patients with a mean age of 38.5 years (±8.1) were enrolled. All patients were suffering from melasma with a strong intensity for a mean time of 5.6 years (range: 1.5–22, SD: 5.6, CI: 2.4–8.9). Prior treatments were performed for at least one season and stopped at least 6 months prior to the study. According to
Fitzpatrick, six patients presented with skin type II, five patients with skin type III and three patients with skin type IV (Table 1). One patient was lost to follow-up after the first treatment; another one was lost to follow-up at the last consultation (week 26–28).

Side-effects

Overall, patients declared pain during the treatment and erythema directly after treatment as ‘moderate’ (pain: mean 2.4, SD = 1.1, CI = 2; 2.7; erythema: mean 2.4, SD = 0.8, CI = 2.1; 2.6), but scaling as ‘very low’ (mean 0.2, SD = 0.4, CI = 0.1; 0.3). Erythema lasted less than 5 days in all cases whereas scaling was seen days to weeks after the treatment (further precision was not possible). There were no downtimes required because of side-effects.

Patients with skin type II had a significantly higher rate of the post-treatment erythema (mean score: 2.5) compared with patients with skin type III (mean score: 2) (P = 0.09). As a result of a small sample size with complete data of only one patient, evaluation of skin type IV patients was statistically not reasonable (Fig. S1).

Treatment effectiveness

Subjective evaluation of pigment distribution

Pigment ratings by patients and physicians were congruent (P = 0.6) and showed significant pigment reduction after each treatment session (P ≤ 0.001). However, the first treatment session yielded the most effective results in all cases (Table 2, Fig. 1).

Objective evaluation of pigment distribution by digital photography

Significant improvement of melasma compared with the baseline was observed using digital photography (P = 0.005). Improvement after the first two treatments was found more intense (3–4 weeks: 54%; n = 7, MIS = 1.8, CI = 1.1; 2.5; 6–8 weeks: 61%, n = 7, MIS = 1.9, CI = 1.5; 2.3), compared with the last evaluation, 26–28 weeks after the first treatment session (42%, n = 5, MIS = 1.2, CI = 0.5; 2) (Fig. 1). Patients with skin type II showed significantly better results than patients with skin type III or IV (P = 0.02) (Figs 2 and 3).

![Objective evaluation of the treatment effectiveness](image)

Figure 2 Objective evaluation of the treatment effectiveness performed by digital photography and SIAscope®. (a) and (b) show mean improvement scores by skin types during the treatment time course. (c) and (d) show individual improvement rates at last consultation grouped by the skin types.
Objective evaluation of pigment distribution by SIAscope®

Evaluation with SIAscope® revealed significant improvement of melasma after each treatment ($P < 0.005$). At weeks 3–4 and 6–8, 85% (11/13) of patients experienced an improvement: 55% (6/13) in terms of pigment reduction and the remaining 45% (5/13) in terms of reduced sharpness of the outlines resulting in less striking appearance of melasma lesions; 23% (2/13) of patients showed worsening of their melasma. At weeks 26–28, only 58% (7/12) of patients experienced an improvement of which 86% (6/7) were due to a reduction of the lesion’s silhouette. Of all the patients, 25% (3/12) experienced no improvement and 17% (2/12) showed worsening of the lesions because of postinflammatory hyperpigmentation. Overall, clinical outcome was significantly better for patients with skin type II ($P = 0.03$) (Table 3, Figs 2 and 4).

Discussion

Fractionated photothermolysis raised hope to be an effective treatment option for melasma patients as its mode of action suggests

![Figure 3](image-url)
Figure 3 Course of clinical improvement of two melasma patients evaluated by digital photography. Photographs (a), (e), (i) and (m) represent pretreatment condition; (b), (f), (j) and (n) represent the condition after first laser treatment session (weeks 3–4); (c), (g), (k) and (o) represent the condition after 2nd treatment (weeks 6–8); (d), (h), (l) and (p) represent the condition after third treatment (weeks 26–28). First row of each patient shows treated side (a–d and i–l) and lower row of each patient shows untreated side (e–h and m–p). Note the discrete pigment reduction and less visible lesions on treated sides because of de-sharpening of outline (indicated by arrows).
melanin elimination with a low rate of side-effects. To the best of our knowledge, only one single case24 and three clinical study reports22,23,25 discuss the clinical outcome of melasma treated by FP. In one of these studies, 25 Asian patients were treated with 15 mJ/MTZ in four treatment sessions over 36 weeks. Improvement was observed in 40 to 60% and postinflammatory hyperpigmentation occurred in 13% of cases.22 Another study enrolled 10 melasma patients with skin types III and IV and performed FP treatment with 6–12 mJ/MTZ during 4–6 sessions 1–2 weeks apart. Pigment reduction of 75–100% based on patients’ and physicians’ evaluation was reached in 50% and 60% respectively.23 However, the follow-up period was rather short, with a maximum of 12 weeks.

In this study, a slight but significant pigment reduction was yielded by weeks 26–28 evaluated using digital photography and the pigment analyser SIAscope26 in 50% (6/12) and 58% (7/12) respectively. However, it needs to be stated that the majority of improvements were attributed to softening of the outlines, resulting in less prominent appearance of melasma lesions. Of all the patients, 58% (7/12) improved slightly, 8% (1/12) improved moderately and 17% (2/12) had no improvement as evaluated in comparison with the non-treated half of the face; 17% (2/12) of

<table>
<thead>
<tr>
<th>Effects</th>
<th>Weeks</th>
<th>3–4</th>
<th>6–8</th>
<th>26–28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate improvement</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Slight improvement</td>
<td></td>
<td>11*</td>
<td>11*</td>
<td>7†</td>
</tr>
<tr>
<td>No improvement</td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Worsening</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Numbers correspond to numbers of patients.

* In five († in six) cases slight improvement in terms of reduced sharpness of outline of the lesions.

Table 3 Objective effects measured by SIAscope26

Figure 4 Melanin distribution during the treatment course detected by digital photography and SIAscope26. Images (a), (d), (g) and (j) represent pretreated condition; (b), (e), (h) and (k) represent condition after first laser session (weeks 3–4); (c), (f), (i) and (l) represent the condition after last laser treatment (weeks 26–28). Upper two panels show treated right side of the patient’s face and lower two panels show the full face for comparison with the untreated side. Note de-sharpening of the outline but less pigment fading.
patients suffered from worsening of the lesions because of postinflammatory hyperpigmentations (one patient with skin type III and one with skin type IV). Consistent with the current literature,26 there were no downtimes because of the wound healing and no severe side-effects besides the two cases of postinflammatory hyperpigmentation in patients with darker skin complexities.

The presented data are congruent with prior studies, although in this study a higher proportion of patients with lighter skin complexities were included. However, comparable results may partly be explained by the fact that present comparison was made between the treated and non-treated sides of patient’s face. As melasma commonly improves during winter, when laser treatments are preferentially performed, the outcome of previous clinical studies may have been influenced by additional co-factors, such as decreased UV-exposure.

Effects of the sunscreen containing the green tea extract OM24® in our study was unclear. Whole-face application may have diminished the improvement of the treated compared with the non-treated face side as OM24® showed photochemo-protective properties in vivo,27 and catecholamines-dependant depigmentation in vitro.28 Mechanistically, OM24® is suggested to have photo- and chemo-protective properties because of the reduction of UVB-mediated epithelial damage.27

The highest pigment reduction was achieved after the first two FP treatments, while after 26–28 weeks from the treatment start melasma partially reoccurred. The lack of long-lasting effects in melain reduction may be attributed to non-curable melanin elimination via MENDs. Modulation of the Wnt and DKK (Dickkopf) signalling pathways are commonly observed in pigmentation disorders.29,30 It may be suggested that melasma treatment without targeted inhibition of the Wnt and DKK pathways within the dermis and epidermis may be ineffective for long-term effects.

The present work is the first study evaluating the FP regimen in a split-face mode for the melasma treatment in patients with skin types II–IV and long follow-up period (more than 6 months). Our results emphasize that indication of FP for the treatment of melasma, particularly in patients with darker skin complexities, needs to be critically evaluated. Before opting for invasive treatment modalities, all conservative treatment options should be explored. However, compared with the other laser treatment modalities, such as Alexandrite laser, FP shows considerably lower side-effects and has the tremendous advantage of almost no downtime requirements because of the wound healing.

To conclude, non-ablative FP can be considered as a valuable tool for a mild reduction of melasma in patients with skin types I and II if topical treatments have failed. Particularly softening of the lesion’s edges shall be expected providing a more even skin complexion. FP treatment for patients with darker skin types (III+) requires high caution because of the risk of postinflammatory hyperpigmentation and treatment should be performed, if at all, with decreased densities.

References

Supporting Information
Additional Supporting Information may be found in the online version of this article:
Figure S1 Intensity of erythema after three FP treatment sessions. The boxplots illustrate each skin type group II, III and IV. Note the significantly higher erythema scores in patients with skin type II compared with patients with skin type III. Patients with skin type IV presented insufficient data for complete statistical evaluation.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.